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In this paper, we discuss the sum-rule that relates the phenomenological coefficients in the multicomponent
random alloy system in the case where the isolated vacancy mechanism is operating. We present applications
of this sum-rule to intrinsic diffusion in multicomponent alloys, intrinsic diffusion in mixed alkali halides
and demixing of multicomponent transition metal oxides in an oxygen potential gradient and an electric
field. In each case, a very substantial simplification in the analysis is made possible because of the
sum-rule.

1. Introduction

The theory of linear non-equilibrium thermodynamics pro-
vides a fundamental and unified formalism for a description
of diffusion in solids. Well known major reviews in this area
have been provided by Howard and Lidiard,1 Adda and Phili-
bert,2 Philibert3 and Allnatt and Lidiard.4 An essential feature
of the formalism is the appearance of a matrix of phenomen-
ological coefficients, the so-called L matrix.
Knowledge of the L matrix is highly desirable because it is

force independent. However, the experimental determination
of the L matrix for the solid state is difficult indeed. Consider-
able effort has therefore been put into finding relations
between the phenomenological coefficients and measurable
quantities such as the tracer diffusivities. An example of such
relations are the so-called Manning relations.5,6 There has also
been considerable interest in identifying relations among the
phenomenological coefficients themselves with the expectation
that this might reduce the amount of transport information
actually necessary to describe a given diffusion situation. The
first of these relations were the ‘ sum-rule relations ’ identified
by Moleko and Allnatt7 for the random alloy model with diffu-
sion occurring via isolated vacancies. Because of this sum-rule,
in the random binary AB alloy the number of independent
phenomenological coefficients is then reduced from three to
one. For the random ternary ABC alloy, the number of phe-
nomenological coefficients is reduced from six to three, and
so on. Since that time, a number of other closely relations have
been identified for various other models, including the dumb-
bell mechanism in the random alloy,8 the vacancy pair in ran-
domly mixed alkali halides,9 the vacancy mechanism for the
4-frequency model for ordered alloys10 and the divacancy
mechanism in the fcc random alloy.11 On application to diffu-
sion problems where the random alloy is a reasonable model to
employ, the original sum-rule relation for the isolated vacancy
mechanism results in very considerable and useful simplifica-
tions. The intent of the present paper is to review these applica-
tions. First, we summarize the random alloy model and the
sum-rule itself. Next, we address intrinsic diffusion in multi-
component alloys, which is followed by a discussion of
intrinsic diffusion in mixed alkali halides. Finally, we discuss

demixing of multicomponent mixed oxides in oxygen potential
gradients and electric fields.

2. The random alloy model

The sum-rules that have been found so far have been asso-
ciated with various mechanisms in the random alloy model
or variants/extensions of this model. It is appropriate there-
fore to review very briefly the random alloy model first. In this
model, the N atomic components are distributed randomly.
The defects, e.g. vacancies, divacancies, dumb-bell interstitials
are also distributed at random. Many diffusion kinetics form-
alisms are restricted to the case where the defects are at vanish-
ingly small concentrations but this is not necessarily a
restriction for the various sum-rules.
We will use focus on diffusion via the agency of isolated

vacancies. The atom-vacancy frequencies, notated as wi , can
be conceptualized in one of two ways. On the one hand, one
can consider them simply as explicit frequencies that depend
only on the species of atom and not on the surroundings.
For example, wA simply then represents the basic vacancy-
atom frequency of a given A atom at all compositions. On
the other hand, one can consider the wi as representing an
average frequency at a given composition.5,12 In other words,
wA represents the average frequency of a given A atom as it
migrates through the lattice sampling the various environ-
ments. Since the average environment of an atom will change
with composition, then wA can also be expected to change with
composition.
The random alloy model with isolated vacancies can of

course be used to describe concentrated substitutional
alloys.5,12,13 The same model can also be used to describe diffu-
sion on the cation sublattice in mixed transition metal oxides
or mixed alkali halides with intra-sublattice jumps.14,15 A
straightforward extension of the model can also be used to
describe diffusion in intermetallic compounds where each sub-
lattice is a random alloy but at a different composition.10,16–18

In that case, both inter- and intra-sublattice jumps can be
introduced.

3. The sum-rule (isolated vacancy mechanism)4,7

For the hopping model, the phenomenological coefficients are
conveniently partitioned into a correlated part (a correlation
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function, frequently called the collective correlation factor)
and an uncorrelated part:

Lij ¼ f
ð jÞ
ij L

ð0Þ
jj ð1Þ

where f
ð jÞ
ij is the collective correlation factor and L

ð0Þ
jj is the

uncorrelated phenomenological coefficient. In general, both
diagonal and off-diagonal phenomenological coefficients have
non-trivial collective correlation factors. A result from linear
response theory for the random alloy model is that the collec-
tive correlation factor can be written as:

f
jð Þ

ij ¼ dij �
2wi

cVcj
hVi:Vj ð2Þ

where

hij:i0j0 ¼
X
s

s � s0
s2

X
1

p ið Þ
g lð Þp jð Þ

g l� sð ÞYgb ð3Þ

and

Ygb ¼ Ygb l0; l0 � s0; i0; j0ð Þ ¼ p
i0ð Þ
b l0ð Þp j0ð Þ

b l0 � s0ð Þ
Z1
0

Ggb tð Þdt

where s and s0 are the nearest neighbour jump vectors and
functions such as p

ðiÞ
g (l) are the site occupancy variables (p

ðiÞ
g

(l) equals 1 if site l is occupied in configuration g by one atom
(or vacancy) of species i and is zero otherwise) and Ggb(t) is the
conditional probability that a system known to be in thermo-
dynamic equilibrium and in the state b will be in configuration
g after time t. In eqn. (3) summation over b and g configura-
tions is implied. By the definition of the functions p

ðiÞ
g (l) the

following must be true:X
i

pðiÞg ðlÞ ¼ 1;

where i can be any atomic species or vacancy; ð4Þ
If we make a summation over all j in eqn. (3):

X
j

hij:i0 j0 ¼
s1 þ s2 þ . . .þ szð Þ � s0

s2

X
l

p ið Þ
g lð ÞYgb � 0 ð5Þ

Again, in eqn. (5) the summation over b and g configurations is
implied.
In a somewhat easier way it can be shown that

hii:i0j0 ¼ 0: ð6Þ

Then, eqns. (5) and (6) together give:X
j 6¼i

hij:i0j0 ¼ 0 ð7Þ

Applying eqn. (7) to the definition of f
ð jÞ
ij (eqn. (2)), we soon

arrive at the following sum-rule relation for an N-component
alloy with the vacancy mechanism operating:4,7XN

i¼1

f
jð Þ

ij wj=wi ¼ 1; j ¼ 1; . . . ;N ð8Þ

Restated in terms of the phenomenological coefficients them-
selves we have:XN

i¼1

Lijwj=wi ¼ Awjcj ; j ¼ 1; . . . ;N ð9Þ

where A is a constant. In effect, the ‘sum-rule ’ relates the
phenomenological coefficients to the vacancy-atom exchange
frequencies and, in doing so, reduces the number of
independent phenomenological coefficients.

4. Some applications of the sum-rule

In this section, we review several applications in diffusion pro-
blems of the above sum-rule. The first application is concerned

with intrinsic diffusion in binary and ternary metallic alloys.
The second application centres on intrinsic diffusion in mixed
alkali halides, whilst the third application is concerned with
demixing of ternary and quaternary transition metal oxides
in oxygen potential gradients or electric fields. In each case,
the sum-rule affords a very considerable simplification in the
analysis.

4.1 Intrinsic diffusivities in the multi-component alloy19

We consider the N-component alloy. We write the flux equa-
tions in the lattice frame as (assuming sources and sinks are
sufficiently numerous that HmV� 0.0 and that there are no
external forces):

Ji ¼ �
XN
j¼1

LijHmj ; i ¼ 1; . . . ;N ð10Þ

Using the Gibbs–Duhem relation these equations can be trans-
formed into:

Ji ¼ �
XN�1

j¼1

nDN
ij Hcj ; i ¼ 1; . . . ;N ð11Þ

where DN
ij are the intrinsic diffusivities. They are generally mea-

sured by way of inert marker shifts in the interdiffusion experi-
ment. The usual method is to use the marker velocity in
conjunction with the measurement of the interdiffusivity.3 In
practice, measurements of the intrinsic diffusivities can be
rather time consuming, especially in ternary alloys and,
accordingly, the amount of intrinsic diffusion data is generally
rather limited compared with the far more plentiful interdiffu-
sivity data. For binary AB alloys, we simply state that this
ratio can be expressed in terms of the phenomenological coeffi-
cients in the usual way; see, for example, Allnatt and Lidiard:4

DA

DB
� cBLAA � cALAB

cALBB � cBLAB
ð12Þ

where DA and DB are the intrinsic diffusivities in the AB binary
alloy. The sum-rule (eqn. (9)) implies immediately that:

DA

DB
¼ wA

wB
ð13Þ

Similarly, for ternary ABC alloys, we have from the sum-rule
(eqn. (9)) that:

DC
BAD

C
CB �DC

BBD
C
CA

DC
AAD

C
BB �DC

ABD
C
BA

¼ wC

wA
ð14Þ

DC
ABD

C
CA �DC

AAD
C
CB

DC
AAD

C
BB �DC

ABD
C
BA

¼ wC

wB
ð15Þ

where DC
AA etc. are the ternary intrinsic diffusivities in the ABC

ternary alloy and C is, by convention, the dependent concen-
tration variable. The formal absence of any correlation factors
and the corresponding simplicity of these equations should be
especially noted.
The general expression (for N atomic components) is:

~DD

DN
N1

DN
N2

� � �
DN

NN�1

2
664

3
775 ¼

wN=w1

wN=w2

� � �
wN=wN�1

2
664

3
775 ð16Þ

where D is a matrix with elements DN
kl and k,l 6¼N.

As an example of application of this finding for an experi-
mental binary alloy system, in Fig. 1a we show results for
the measured ratio of the intrinsic diffusivities and therefore
the ratio of the exchange frequencies (from eqn. (13)) for the
Ag/Cd system.20 With the ratio of the atom-vacancy exchange
frequencies in hand it is possible to investigate what effect the
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interactions between the atoms might have on the exchange
frequencies. As a very simple means of analysis, in the Ising
alloy model (in a diffusion context) the interactions are nearly
always introduced as the breaking of bonds as the atom jumps.
This has the effect of augmenting or diminishing the original
migration energy Ui . If we assume a purely random distribu-
tion of A and B atoms in the binary AB alloy the exchange
frequencies can then be written in the spirit of the Bragg–
Williams approximation as:

wA ¼ nA expð�UAbÞ expð�ðcAEAA þ cBEABÞðz� 1ÞbÞ
wB ¼ nB expð�UBbÞ expð�ðcAEAB þ cBEBBÞðz� 1ÞbÞ

ð17Þ

where nA(B) are the attempt frequencies, UA(B) are the hypothe-
tical migration energies in the absence of interactions, EAA is
the interaction energy between a pair of nearest neighbouring
A atoms, EAB is the interaction energy between a pair of near-
est neighbouring A and B atoms and EBB is the interaction
energy between a pair of nearest neighbouring B atoms, z is
the coordination, ci is the composition of component i and
b ¼ (kT )�1. If we make the further assumption that the
attempt frequencies can be equated, then the ratio of the
exchange frequencies wA/wB is simply given by:

wA

wB
¼ exp �UA þUB � cA EAA � EABð Þ½ðf

þcB EAB � EBBð Þ�ðz� 1ÞÞbg ð18Þ
For interaction energies that are independent of composi-

tion this implies therefore that ln(wA/wB) should be a linear
function of composition at a given temperature. It can be seen
that in the Ag/Cd system the logarithm of this ratio is in fact
close to being linear with composition, as suggested by eqn.
(18). We hasten to add, however, that this is not always the
case, particularly when a wide composition range is covered.
Then it is likely that some dependence on composition of the
interaction energies will be needed.
Of course, there is no reason why calculations on more

sophisticated models using, for example, the embedded atom
method or short time molecular dynamics cannot be used here.
As with an exact kinetic treatment of the Ising model, the main
obstacle would be to ensure that, given the large number of
possible configurations, the frequencies are correctly ensem-
ble-averaged. Unfortunately, at present such averaging proce-
dures can only be performed satisfactorily with computer
simulation such as kinetic Monte Carlo.
There has been a long tradition in diffusion research to

determine tracer correlation factors, if possible, because these
factors give rather direct information on the degree of correla-
tion in the random walks of the atoms. Tracer correlation fac-
tors can of course be inferred from isotope effect experiments
or from ratios of tracer diffusivities using a diffusion kinetics
theory.5 In the present case, however, the tracer correlation
factors can also be obtained by way of the ratio of the intrinsic
diffusivities. With the ratio of the exchange frequencies in hand

(from the ratio of the intrinsic diffusivities) the corresponding
tracer correlation factors can be calculated readily using the
random alloy diffusion kinetics formalisms of Manning5

Holdsworth and Elliott21 or Moleko et al..22 Using the results
of Fig. 1a and the latter formalism, which is the most accurate
of the three,23 we present in Fig. 1b the corresponding values
for fAg and fCd . It can be seen that Ag atoms have the higher
tracer correlation factors (they have the higher atom-vacancy
exchange frequency) and are therefore less correlated in their
motion that the Cd atoms.

4.2 Intrinsic diffusivities in mixed alkali halides

Now, let us consider the mixed alkali halide system (A,B)Y, see
for example Lindstrom15 and Allnatt and Lidiard.4 We assume
that the cations A and B diffuse by isolated vacancies on the
cation sublattice whilst the anions Y diffuse by isolated vacan-
cies on the anion sublattice. The flux equations are (we assume
that qA ¼ qB ¼ �qY):

JA ¼ LAAXA þ LABXB;

JB ¼ LABXA þ LBBXB;

JY ¼ LYYXY: ð19Þ

where for the internal forces we have:

XA ¼ �HmA þ eEi;

XB ¼ �HmB þ eEi;

XY ¼ �eEi: ð20Þ

Upon application of the electro-neutrality conditions and
the Gibbs–Duhem relation we find that:4,15

JA ¼ �DANHcA; JB ¼ �DBNHcB ð21Þ

where

DA ¼ akTcY
NcAcB

LAALBB � L2
AB þ LYY LAAcB � LABcAð Þ=cYÞ

LAA þ LBB þ 2LAB þ LYY

� �

DB ¼ akTcY
NcAcB

LAALBB � L2
AB þ LYY LBBcA � LABcBð Þ=cYÞ

LAA þ LBB þ 2LAB þ LYY

� �
ð22Þ

and N here is the number of lattice sites per unit volume. On
application of the sum-rule (eqn. (9)) to the ratio of these
intrinsic diffusion coefficients we soon find the interesting
and simple result that:

DA

DB
¼ wA wB þ wYð Þ

wB wA þ wYð Þ ð23Þ

where wY is the anion vacancy exchange frequency. For the
limiting case wY�wA (wB), i.e. the anion mobility is very high,
eqn. (23) then shows that the ratio of the intrinsic diffusion
coefficients is simply given by wA/wB . Interestingly, this is
the same result for the intrinsic diffusivities for the components
A and B in the binary alloy described above (eqn. (13)). This
comes about because the mobility on the anion sublattice
can no longer determine the rate of interdiffusion. On the other
hand, for the case where wY�wA (wB), i.e. the anion mobility
is very low, according to eqn. (23) the ratio of the intrinsic dif-
fusion coefficients is simply unity. This can be understood as
follows. In the interdiffusion experiment with the diffusion cou-
ple AY–BY the essentially immobile anion sublattice requires
the fluxes of the cations A and B to be equal and opposite.
There is then no inert marker shift and the intrinsic diffusivities
of the cations A and B are required to be equal. It also turns
out that when the vacancy pair mechanism is employed, a dif-
ferent sum-rule is valid, but the same result as in eqn. (23) is
still obtained.9 Put in another way, the result of measuring
the ratio of the intrinsic diffusivities in the mixed alkali halide

Fig. 1 (a) The ratio DAg/DCd (¼wAg/wCd) (plotted on a log scale) as
a function of cCd at 873 K.20 (b) Corresponding tracer correlation
factors using the Moleko et al. formalism.22
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cannot differentiate between diffusion by isolated vacancies or
vacancy pairs.

4.3 Demixing of multicomponent oxides in an oxygen
potential gradient or an electric field24–26

As our final example of an application of the sum-rule, we con-
sider steady state demixing in mixed transition metal oxides
which are predominantly semi-conductors. For convenience,
in the following we will analyse the quaternary mixed oxide
(A,B,C)O taking the rock-salt structure and consider demixing
in an oxygen potential gradient and the electric field together.
In these transition metal oxides the oxygen ions are essentially
immobile at the temperatures of interest and so they largely
act as ‘ spectators ’ for the cation diffusion processes. One end
of the sample is exposed to a higher oxygen partial pressure
(which, at a given temperature, determines the degree of non-
stoichiometry and therefore the cation vacancy composition
at this end) whilst the opposite end is exposed to a lower
oxygen partial pressure, which again determines the (lower)
cation vacancy composition. At high temperatures, where the
cations are mobile, the vacancy gradient then gives rise to a
vacancy flux across the sample and a cation flux in the oppo-
site direction. An alternative way of obtaining a vacancy flux is
to apply an electric field to the sample: under high current con-
ditions there is a cation flux in direct response to the field and
there is a vacancy flux in the opposite direction. At one end of
the sample, in the direction of the cation flux, new oxide forms
at the surface with oxygen coming from the gas phase. At the
other end, excess oxygen ions evaporate and the oxide is lost.
This results eventually in the sample moving with a steady
state velocity v in the direction of the higher oxygen partial
pressure (or down-field if an electric field is imposed).
Electronic mobility is assumed far greater than the atomic

mobilities and therefore is not rate determining in the diffusion
of the cations. The cations A, B and C are assumed to be ran-
domly mixed, i.e. the random alloy model. The flux equations
are written as:

Ji ¼ �
X
j

Lij Hmj � HmV � Fj

� �
; i; j ¼ A;B;C ð24Þ

where mi is the chemical potential of component i (A, B, C or V
(vacancies)), the Fj are the electrical driving forces (¼ qE,
where q is the charge on the cation and E is the electric field).
For these mixed divalent ion oxides it is very reasonable to
assume that FA ¼ FB ¼ FC ¼ F.
The condition that leads to steady state of the demixing

process can be expressed as:26

Ji � vciN ¼ 0; i ¼ A;B;C ð25Þ

where ci is the composition of component i (with respect to the
cation sublattice so that cAþ cBþ cCþ cV ¼ 1.0) and N is the
number of lattice sites per unit volume.
eqns. (24) and (25) then lead quickly to the result:

H mA � mV � Fð Þ
H mB � mV � Fð Þ
H mC � mV � Fð Þ

2
4

3
5 ¼

LAA LAB LAC

LAB LBB LBC

LAC LBC LCC

2
4

3
5
�1 �cAnN

�cBnN
�cCnN

2
4

3
5
ð26Þ

Eqn. (26) is the principal steady state demixing equation. It
provides the basic relationships between the thermodynamic
driving forces and the phenomenological coefficients as appro-
priate to the demixing experiment.
On substitution of the sum-rule (eqn. (9)) into eqn. (26) we

soon obtain:

H mi � mVð Þ ¼ nciN

L
ð0Þ
ii

þ F ¼ � nNkT

wicVK
þ F ; i ¼ A;B;C ð27Þ

where we have written L
ð0Þ
ii ¼ cvciwiK/kT, where K ¼ Na2 and

a is the lattice parameter. Note the surprising absence of
off-diagonal phenomenological coefficients in eqn. (27).
After converting the chemical potential gradients to compo-

sition gradients in the usual way:4

H mi � mVð Þ ¼
X
j

@ mi � mVð Þ
@cj

Hcj ; i; j ¼ A;B;C ð28Þ

and assuming thermodynamic ideality, a condition which is, of
course, appropriate for the random alloy model, then we can
write that mi� mV ¼ kTln(ci/cV). This soon leads to the follow-
ing coupled set of ordinary differential equations describing
generally the steady-state composition profiles:

dci
dx

¼ cinN
cVK

X
j

cj
wj

� 1

wi

 !
þ cicVF

kT
; i; j ¼ A;B;C

dcV
dx

¼ nN
K

X
i

ci
wi

� cV 1� cVð ÞF
kT

; i ¼ A;B;C: ð29Þ

where x represents a coordinate along the length of the moving
sample. Eqn. (29) as derived here is exact for the randomly
mixed system and for any value of the vacancy site fraction.
These equations are appropriate for a ‘closed ’ system where
the cation vacancies within the material can respond to local
kinetic conditions and forces.
On the other hand, if we impose the requirement that, for

example, cV ¼ const (i.e. in the electric field case), then ther-
modynamic ideality conditions will give us HmV ¼ 0. The final
equation then is:

d log cið Þ
dx

¼ � nN
cVKwi

þ F

kT
; i ¼ A;B ð30Þ

with the relation cC ¼ 1� cV� cA� cB . This equation is
appropriate for an ‘open’ system where the cation vacancies
in the oxide are in communication with the external partial
pressure(s) of oxygen. This would require extensive grain
boundary diffusion and a small grain size.
In Fig. 2 we present results for the steady state demixed

cation profiles of a ternary oxide (A,B)O in an oxygen poten-
tial gradient and for open and closed configurations. Monte
Carlo results are shown for the closed system case only. Large
differences are apparent in the demixed cation profiles for the
cases of the open and closed systems. In real systems, careful
fitting of the profiles with exchange frequency ratios obtained
from tracer diffusivities (using, say, the kinetic theory of
Moleko et al.22) with supplementary information on the
dependence of the cation vacancy concentration as a function

Fig. 2 The steady-state cation composition profiles for the case
wB/wA ¼ 0.1. Symbols: Monte Carlo simulation results, solid lines:
numerical solution for the closed system, dashed line: numerical
solution for the open system (simple model).24
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of (demixed) cation concentration, may suggest which possibi-
lity, i.e. open or closed is more appropriate to the experimental
demixing situation. In Fig. 3, steady state demixing cation pro-
files are shown for a hypothetical (A,B,C)O oxide after demix-
ing in an electric field. Note the unusual shallow maximum in
the concentration profile of the cation B (which has an atom-
vacancy exchange frequency intermediate between the other
two).

5. Conclusions

In this paper, we have presented and discussed the sum-rule
that relates the phenomenological coefficients in the multicom-
ponent random alloy system with the isolated vacancy
mechanism operating. We discussed application of this sum-
rule to intrinsic diffusion in multicomponent alloys, intrinsic
diffusion in mixed alkali halides and demixing of multicompo-
nent transition metal oxides in an oxygen potential gradient
and an electric field. In each case, a very substantial simplifica-
tion in the analysis was made possible on account of the
sum-rule.
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Fig. 3 The steady-state cation composition profiles in an electric field
F/kT ¼ 1.088 for quaternary system (A,B,C)O with wB/wA ¼ 0.08
and wC/wA ¼ 0.05. Symbols: Monte Carlo simulation results, solid
lines: numerical solution for the closed system. Initial conditions:
cA ¼ cB ¼ cC ¼ 0.33.
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